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ABSTRACT 
 

The aim of this work is to find the solution of higher order linear boundary value problem using genetic algorithm. 

A continuous genetic algorithm has been design and applied to the solution of higher order boundary value problem. 

The genetic algorithm solves the differential equation by a process of evaluating the best fittest solutions curve from 

a family of randomly generated solution curves. This method is applicable to differential equation of any order. 

Numerical results presented in the work illustrate the applicability of the genetic algorithm for any order linear 

boundary value problem. 
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I. INTRODUCTION 

 

Most fundamental laws of science are based on models 

that explain variation in physical properties and state of 

system described by differential equations. To find the 

solution of differential equation is difficult job. The 

difficulty is increase as the order of differential equation 

and nonlinearity is increase. Therefore, solving the 

higher order differential equation is perhaps the most 

difficult problem in all of numerical computation. 

 

The work presented in this paper is motivated by the 

success of using continuous genetic algorithm for 

solution of second-order, two-point linear and nonlinear 

boundary value problems. Although there are many 

possible methods or techniques are available for solving 

linear and nonlinear differential equation problems, 

such as, finite element method, soothing method, Ritz 

energy technique, etc. but they are difficult to 

implement or they required some more advanced 

mathematical tools. That tools are may be root finding 

technique or solution of some initial value problem. 

 

Although many of the current methods for solving 

ordinary differential equations were developed around 

the turn of the century, the past 15 years or so has been 

a period of intensive research. The emphasis of this 

survey is on the methods and techniques for solving 

ordinary differential equations are based on genetic 

algorithms. The application of genetic algorithm in the 

field of numerical analysis is not new, for solving fluid 

flow problem genetic algorithm used by Pryor [1] and 

Pryor and Cline [2]. D. A. Diver [3] introduces a genetic 

algorithm for the solution of linear and nonlinear 

ordinary differential equation. Chaudhury and 

Bhattacharyya [4] used genetic algorithm to solve the 

Schrödinger equation. A hybrid scheme of genetic 

algorithm and Newton’s method for solving a system of 

nonlinear equation introduced by Kare et al [5]. 

Raudensky et al [6] present a genetic algorithm for 

solving the one-dimensional inverse heat conduction 

problem. A novel method based on continuous genetic 

algorithm is introduced by Z. S. Abo-hammour et al [7] 

for the solution of the second-order, two-point boundary 

value problem. Advanced continuous genetic algorithm 

and their application in the motion planning of robotic 

manipulators are proposed by Z. S. Abo-Hammour et al 

[8]. A numeric genetic algorithm is introduced by Cong 

P. Li T. [9]. M. W. Gutowski proposed a smooth genetic 

algorithm[10] applied for finding the distribution of 

magnetic nanocrystallites.  
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II. Continuous Genetic Algorithm 
 

2.1 Continuous genetic algorithm: The solution curves 

of boundary value problems are smooth in nature. So, 

continuous genetic algorithm is used. The construction 

of a genetic algorithm is based on the following 

conditions- 

 

1. The genetic representation of potential problem 

solution, 

2. A method for creating initial population of solution, 

3. The design of the genetic operators, 

4. The definition of the fitness function, 

5. The setting of system parameters 

 

Each of the above components greatly affects the 

solution obtained as well as the performance of the 

genetic algorithm. The following genetic operators that 

are used in this work.  

 

2.2 Initialization: The implementation of a genetic 

algorithm starts with generating a population of possible 

solutions. For the solution of boundary value problem 

the initialization function is smooth and it should 

satisfied the given boundary values. Two smooth 

initialization function: the Gaussian function and the 

tangent hyperbolic function are used [7].  

 

2.2.1 Tangent hyperbolic function: The tangent 

hyperbolic function is used in this work is given below. 

This function has some limitation for a particular type 

of boundary condition. If the nodal values of the 

extreme end are same, it will not work. In that case, the 

Gaussian function is applied, which is described in next 

section. 

 

          (      (
   

 
))  

For all 1 ≤ i ≤ N and 1 ≤ j ≤ Np  

 

Where P(i,j) is the value of the i
th
 node for the j

th
 parent. 

µ is a random number within the range [11/4, 33/4] and 

it specified the centre of the function, σ is a random 

number within the range [1, 11/3] and it specifies the 

degree of dispersion [7]. Np is the number of initial 

population. The convergence speed is depending on the 

initialization function. If the initialization is closer to the 

final solution the convergence speed is faster and from 

study it is seen that after few generations convergence 

speed is governed by the selection, crossover and 

mutation operators. 

 

2.2.2 Gaussian function: The Gaussian function which 

is used in this work for special boundary condition, is 

given as [7]. 
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   ) 

For all 1 ≤ i ≤ N and 1 ≤ j ≤ Np  

 

Where P(i,j) is the value of the i
th
 node for the j

th
 parent, 

µ is a random number within the range [11/4, 33/4] and 

it specified the centre of the function, σ is a random 

number within the range [1, 11/3]. 

 

2.3 Evaluation: Evaluation is performed by the mean of 

fitness function. It is a measure of quality of the 

individual in the population. The fitness function is 

defined as,   
 

   
  

 

Where R is overall residual. The main goal of the 

genetic algorithm is maximize the fitness function F. 

 

2.4 Selection: The population is arranged in ascending 

order based on their relative fitness function value. The 

selection of population is rank based. The maximum 

fitness function values have highest rank and minimum 

fitness function values have lowest value. The bottom 

50% of the population is discarded and the remaining 50% 

are selected for reproduction. The overall quality of the 

population is depending on the selection mechanism and 

its increase from one generation to the next. 

 

2.5 Crossover: Crossover is the genetic algorithm 

operator that attempts to mix each pair of population 

selected as parents, to create the likelihood of keeping 

the good properties of each parent population in the 

offspring children [7]. Crossover provides the means by 

which valuable information is shared among the 

population. Crossover operator is implemented in 

several works in the literature. In this work crossover 

operator is expressed as  

                     

(      )                              

                   (      (
   

 
))    

  

For all 1 ≤ i ≤ N 

 

Where P(i,j), P(i,k), CL and CL+1 represent the two 

parents chosen from the mating pool and the two 
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children obtained through crossover operator 

respectively, w represent the crossover weighting 

function within the range [1, 11/3]. The crossover 

operator also maintains the smoothness of the solution 

curves. 

 

2.6 Mutation: Mutation operator has two important 

roles during the evaluation process in a genetic 

algorithm. First is to introduce unexplored genetic 

material to the population. Second is to maintain the 

diversity of the candidate solution in a population over 

the generations, preventing premature convergence of 

the genetic algorithm to suboptimal solution [7]. In this 

work mutation operator is expressed as 

 

                                 

   (
       

   )    

For all 1 ≤ i ≤ N, 1 ≤ j ≤ Np  

 

Where C(i,j) represent the j
th
 child produced through the 

crossover process,         is the mutated j
th
 child, M is 

the Gaussian mutation function and d represent a 

random number within the range [-1,1]. 

 

2.7 Elitism operator: After evaluation process, the 

population is going to change in every generation 

because of the crossover and mutation operators. Due to 

this the best information or population is vanish. To 

overcome that problem elitism operator is applied. 

Elitism operator insures that in the next generation the 

best-fitted individual is not less than previous fitted 

individual.  

 

2.8 Extinction and immigration operator: After few 

numbers of generations, the population is going to 

stagnate, due to repetitions of the crossover and 

mutation operator. To overcome this problem extinction 

and immigration operator is applied to the population. 

In this process, half of the population is generated by 

same initial population function [7]. The another half 

population is generated by this formula that is given as 

 

                       

For Np /2+1 ≤ j ≤ Np  

 

Where P(i,j) is the j
th 

parent generated by above operator, 

P(i,1) represent the best fitted population, M and d has 

already described in previous section. 

 

2.9 Scaling operator: For solving higher order linear 

boundary value problem by genetic algorithm, after few 

numbers of generations the shape of the curve is 

generated but the exact solution is far away. This 

operator is given as                   

   

For all 1 ≤ i ≤ N and 1 ≤ j ≤ Np  

Where         is the j
th
 parent generated by scaling 

operator,        represent the previous generated 

population and   is a random number between Fmax and 

1. Fmax is the maximum value of fitness function so far 

found during the evaluation process. 

 

2.10 Replacement: After the application of genetic 

operators to the initial (parent) population, a new 

population is generated. The previous population is 

replaced by new generated population, which is better 

fitted. This is also known as “life cycle” of the 

population. 

 

2.11 Termination: The process described is iterated 

until an acceptable solution is found. The termination 

criterion is defined by the user, it could be either the 

difference in fitness value of few subsequent 

generations or a fixed number of generations which the 

user thinks, would provide a reasonable acceptable 

solution. In this work, the maximum fitness value is set 

to be 0.99999 and the maximum number of generation 

is set to be 500000. The genetic algorithm is terminating 

when one of the above criterion is met.  

 

III. Problem Formulation and Numerical 

Results 

 
Genetic algorithm and its operators are described in 

previous section are coded in MATLAB (R 2011a) for 

the solution of boundary value problem. In problem 

formulation, there are two types of parameter, one is 

genetic algorithm related and another is boundary value 

related. These parameters are described in next section. 

After that, the numerical results are shown in graphical 

and tabular form. 

 

3.1 Genetic algorithm related parameter : In this 

work, following parameters are used in each problem. 

The initial population size (Np) is set to be 100. The 

selection mechanism is rank based. The crossover and 

mutation probability is set to be 0.5 and 0.4 respectively. 

The number of elite parents, which are directly goes to 

next generation without any applications of genetic 
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operators, is set to be 10. The scaling, extinction and 

immigration operator is alternatively applied after every 

100 number of generations.  

 

The genetic algorithm is stopped when one of the 

following conditions is satisfied. These are as following 

 

1. When the value of maximum fitness (Fmax) is reach 

to 0.99999. 

2. When the number of generation is, exceed by 

500000. 

 

3.2 Boundary value related parameter: Genetic 

algorithm does not require information of derivatives, 

because it is an optimization tool. Due to this, the 

governing differential equation is converting into 

discretization form. The centred-difference formulas, 

with truncation error of order 0 (h
2
) is used to convert 

differential equation into discretization form. 

 

The general fourth-order differential equation two-point 

boundary value problem of the form 

 

                                 A ≤ x ≤ B 

 

Together with boundary conditions 

 

y(A)=a  y′(A)=b  y″(B)=c  y‴(B)=d 

y(A)=a  y″(A)=b   y(B)=c y″(B)=d 

 

For the approximation, each derivative term is replaced 

in the discretized form by a difference quotient. The 

interval of the boundary value problem is equally 

partitioned into N+1 subintervals. The length of each 

subinterval is given as    

  
   

   
 

 

Where N = 9 is a number of interior nodes. 

For approximating y′(xi), y″(xi), y‴(xi) and y‴′(xi) , the 

centre-difference formula is given as 

 

          
                          

  
 

         
                      

   
 

        
             

  
 

       
         

  
 

 

With the help of above equation the original differential 

equation is rewrite in discretized form as follows:  

 

                                

 

The residual of i
th
 node (  ) and the overall individual 

residual (R) is given as  

 

                                 

  √∑  
 

 

   

 

 

To convert the minimization problem of R into a 

maximization problem of F a mapping of the individual 

residual R is required. Therefore, the fitness function is 

defined as 

 

  
 

   
 

 

The maximization of above fitness function is the main 

task of genetic algorithm. The boundary value related 

parameters are as follows: 

1. The number of interior nodes (N = 9). 

2. The step size (h = 0.1). 

3. The boundary conditions at both the ends that 

are vary from problem to problem. 

The interval between which the differential equation is 

solved (0 ≤ x ≤ 1). 

 

IV. Numerical Results 

4.1 Case-1 

 

Euler-Bernoulli beam equation is solving to find the 

deflection of a beam. In this case, one end of the beam 

is fixed and another end is free as shown in figure 3.1. 

   

    
    

  
     0 ≤ x ≤ 1  with following boundary 

condition 

 

y (0) = 0     y′ (0) = 0    y″ (0) = 0    y‴ (0) = 0 

 

Where: E = Modulus of Elasticity (material property), I 

= Moment of Inertia (geometry of material), f(x) = load 

per unit length, y(x) = deflection (displacement) from 

vertical and L = length of the beam 
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Fig. 4.1 Cantilever beam with uniformly distributed 

load 

     

The discretization form of above governing differential 

equation is given as 

 

   
(
      

  
                         )

 
 

 

To find the exact information of any point we need 

information of four other points in centre-difference 

method. In this case, the value of node number 1 is 

known and all other all unknown.  

 

 
Fig. 4.2 Cantilever beam with discretization 

 

For node 2 to 11 information is generated initially by 

tangent hyperbolic function and for the information of 

nodes 0, 12 and 13 is founded by the help of given 

boundary conditions. For getting the information of any 

node by centre-difference formula, the information of 

four other nodes is needed.  

 

For example, for getting the information of node 

number 2, the information of node 0, 1, 3 and 4 is 

needed. But the genetic algorithm is only generating the 

information of 2 to 11 number of nodes. To overcome 

this problem the given boundary conditions are also 

convert into discretization form. The boundary 

condition in discretization form is give additional 

information for the solution curve. The genetic 

algorithm is coded in MATLAB (R 2011a) and the 

numerical results are compared with exact solution.  

These results are shown for f(x)/EI = 0.1, 1 and 10 in 

figure 4.3, 4.4 and 4.5 respectively.  

 

 
Fig. 4.3 Graph between exact value and GA value for 

f(x)/EI = 0.1 

 
Fig. 4.4 Graph between exact value and GA value for 

f(x)/EI = 1 

 

Table 4.1 Comparison between exact and GA value for 

case-1. 

 

f(x)/E

I 

0.1 1 

Node 

(i) 

Exact GA Exact GA 

1 0 0 0 0 

2 0.0002

3 

0.0002

5 

0.0023 0.0025 

3 0.0008

7 

0.0009

0 

0.0087 0.0090 

4 0.0018

3 

0.0018

8 

0.0183 0.0188 

5 0.0030

4 

0.0031

0 

0.0304 0.0310 

6 0.0044

2 

0.0045

0 

0.0442 0.0451 

7 0.0059

4 

0.0060

3 

0.0594 0.0603 

8 0.0075

3 

0.0076

4 

0.0753 0.0764 

9 0.0091

7 

0.0093

0 

0.0917 0.0930 

10 0.0108

3 

0.0109

7 

0.1083 0.1097 

11 0.0125

0 

0.0126

5 

0.1250 0.1265 

Fitnes

s 

0.99999 0.99999 
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GA

Exact
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0
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0.1
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GA

Exact

L 

f(x) 

x = 0 x =1 

x 

y 

Imaginary node 

use  

y′(x = 0) = 0 

given 

y(x = 0) = 0 

use 

y″(x = 1) = 0 

0    1      2     3     4    5     6    7     8    9    10    11   12   13 

Imaginary nodes 

use 

y″′(x = 1) = 0 
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In given loading value the genetic algorithm terminated 

before it reached the maximum number of generation 

(500000). The fitness function reached the maximum 

fitness value of 0.99999. The number of generation after 

which the genetic algorithm terminated is given as in 

table 4.2 

 

4.2 Case-2 

 

In this case Euler-Bernoulli beam with both ends are 

simply support is solved by genetic algorithm. The 

governing differential equation is same as in case-1. The 

boundary condition at the extreme end is different from 

the case-1. For this case, the Gaussian function is use 

for initial population generation and all other genetic 

operators are to be same as used in case-1.  

 

  
   

    
    

  
                       0 ≤ x ≤ 1    

 

With following boundary condition 

 

y (0)=0  y′′ (0)=0  y (1)=0  y″ (1)=0 

 

In this case, the exact information of two extreme end is 

known (i.e. deflection at node 1 and 11 is known). The 

information of nodes 0 and 12 is getting from boundary 

conditions and centre difference formula. After that, the 

genetic algorithm is applied for the solution of above 

linear fourth-order differential equation. The GA results 

shown in graphical and tabular form compare with exact 

solution. 

 

 
Fig. 4.11 Graph between exact value and GA value for 

f(x)/EI = 0.1 

 

 

 
Fig. 4.12 Graph between exact value and GA value for 

f(x)/EI = 1 

 

Table 4.2 Number of generation when GA is terminated 

for case-1 

 

f(x)/EI 
Number of 

generation 

0.1 292605 

1 287601 

 

Table 4.3 Comparison between exact and GA value for 

case-2. 

 

f(x)/EI 0.1 1 

Node (i) Exact GA Exact GA 

1 0 0 0 0 

2 0.0004 0.0004 0.0040 0.0041 

3 0.0007 0.0007 0.0077 0.0078 

4 0.0010 0.0010 0.0106 0.0106 

5 0.0012 0.0012 0.0124 0.0125 

6 0.0013 0.0013 0.0130 0.0131 

7 0.0012 0.0012 0.0124 0.0125 

8 0.0010 0.0010 0.0106 0.0106 

9 0.0007 0.0007 0.0077 0.0078 

10 0.0004 0.0004 0.0040 0.0041 

11 0 0 0 0 

Fitness 0.99999 0.99999 

 

In given loading value the genetic algorithm terminated 

before it reached the maximum number of generation 

(500000). The genetic algorithm solution is well match 

with exact solution. The fitness function reached the 
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maximum fitness value of 0.99999. The number of 

generation after which the genetic algorithm terminated 

is given as in table 4.4 

 

Table 4.4 Number of generation when GA is terminated 

for case-2 

  

f(x)/EI 
Number of 

generation 

0.1 270200 

1 270000 

 

V. CONCLUSION 

 
The fourth-order linear boundary value problems are 

successfully solved by genetic algorithm. Genetic 

algorithm uses the objective function information and 

not the derivative information. Diversity is essential to 

the genetic algorithm because it enables the algorithm to 

search a large region of the population. For the solution 

of boundary value problem the solution curve must be 

smooth in nature. The genetic algorithm is versatile in 

nature because the operators of genetic algorithm are 

user and problem dependent and easy to excess.  The 

numerical results from genetic algorithm are closely 

matched with available results. 
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